129 research outputs found

    Elastic-plastic Behaviour of Perforated Aluminium under Tension and Compression

    Get PDF
    The elastic-plastic behaviour of perforated aluminium sheets is examined in relation to the relative density.A compression device, which permits a changeable support of the specimens, was designed for that purpose. The gained results are discussed in the context of a modified Voigt-Reuss mixing rule and are compared with results from tensile tests. The experiments are simulated by means offinite element calculations, expanded on smaller relative densities and the influence of the boundary conditions at the ends of the specimens on the results is examined. Finally, the initial yielding on the microscale is examined and compared to macroscopically determined values

    Engineering Flow and Design

    Get PDF
    The importance of design in natural and engineered flow systems is undisputed. It is not only essential to life, but also plays a crucial role in our technological world. In Nature, it arises organically, spontaneously, and is the constructal path for systems to persist in time. The generation of the best design is the target of engineered flow systems. Fluid dynamics and thermodynamics have played a crucial role in the search for these flow designs. Analytical, numerical (CFD) and experimental studies played crucial roles in many technological breakthroughs. They provide the frameworks for understanding, simulating and interpreting flow phenomena. The collection of the articles in this issue, along with a complementary and expansive volume devoted to the same subject, reflect and reaffirm the importance and relevance of the study of flow design in natural and man-made flow systems in the twenty-first century

    Special Focus on: Optimal Fluid Systems & Machinery

    Get PDF
    The competitive cost of numerical simulations over laboratory studies, due to the continued advancements in computing performance, has made computational fluid dynamics an integral tool in the study of engineering problems. This topical special focus issue “Optimal Fluid Systems and Machinery” of the Journal of Research on Engineering Structures & Materials (RESM) covers a varied range of engineering systems. It contains papers selected on the basis of the results of regular peer review of the short manuscripts submitted for consideration by the participants of the Special Session “Fluid Flow, Energy Transfer and Design” at the 13th International Conference on Diffusion in Solids and Liquids (DSL2018) held in Vienna, Austria

    Transport Problems with a Focus on Fluid and Heat Flow

    Get PDF
    The presented volume “Transport Problems with a Focus on Fluid and Heat Flow” covers in a wider sense diffusion related phenomena. The basic phenomena of heat and mass transfer play an important role in basic and applied research and this volume presents a balanced collection of recent developments in this are

    A generalized framework towards structural mechanics of three-layered composite structures

    Get PDF
    Three-layered composite structures find a broad application. Increasingly, composites are being used whose layer thicknesses and material properties diverge strongly. In the perspective of structural mechanics, classical approaches to analys is fail at such extraordinary composites. Therefore, emphasis of the present approach is on arbitrary transverse shear rigidities and structural thicknesses of the individual layers. Therewith we employ a layer-wise approach for multiple (quasi-)homogeneous layers. Every layer is considered separately whereby this disquisition is based on the direct approach for deformable directed surfaces. We limit our considerations to geometrical and physical linearity. In this simple and familiar setting we furnish a layer-wise theory by introducing constraints at interfaces to couple the layers. Hereby we restrict our concern to surfaces where all material points per surface are coplanar and all surfaces are plane parallel. Closed-form solutions of the governing equations enforce an arrow frame since they are strongly restrictive in the context of available boundary conditions. Thusacomputational solution approach is introduced using the finite element method. In order to determine the required spatially approximated equation of motion, the principle of virtual work is exploited. The discretization is realized via quadrilateral elements with quadratic shape functions. Here by we introduce an approach where nine degrees of freedom per node are used. In combination with the numerical solution approach, this layer-wise theory has emerged as a powerful tool to analyze omposite tructures. In present reatise, e ould ike o arify he road cope f his pproach

    Development of Surface-Coated Polylactic Acid/Polyhydroxyalkanoate (PLA/PHA) Nanocomposites

    Get PDF
    This work reports on the design and development of nanocomposites based on a polymeric matrix containing biodegradable Polylactic Acid (PLA) and Polyhydroxyalkanoate (PHA) coated with either Graphite NanoPlatelets (GNP) or silver nanoparticles (AgNP). Nanocomposites were obtained by mechanical mixing under mild conditions and low load contents (<0.10 wt %). This favours physical adhesion of the additives onto the polymer surface, while the polymeric bulk matrix remains unaffected. Nanocomposite characterisation was performed via optical and focused ion beam microscopy, proving these nanocomposites are selectively modified only on the surface, leaving bulk polymer unaffected. Processability of these materials was proven by the fabrication of samples via injection moulding and mechanical characterisation. Nanocomposites showed enhanced Young modulus and yield strength, as well as better thermal properties when compared with the unmodified polymer. In the case of AgNP coated nanocomposites, the surface was found to be optically active, as observed in the increase of the resolution of Raman spectra, acquired at least 10 times, proving these nanocomposites are promising candidates as surface enhanced Raman spectroscopy (SERS) substrates

    Decellularisation and Histological Characterisation of Porcine Peripheral Nerves

    Get PDF
    Peripheral nerve injuries affect a large proportion of the global population, often causing significant morbidity and loss of function. Current treatment strategies include the use of implantable nerve guide conduits (NGC’s) to direct regenerating axons between the proximal and distal ends of the nerve gap. However, NGC’s are limited in their effectiveness at promoting regeneration Current NGCs are not suitable as substrates for supporting either neuronal or Schwann cell growth, as they lack an architecture similar to that of the native extracellular matrix (ECM) of the nerve. The aim of this study was to create an acellular porcine peripheral nerve using a novel decellularisation protocol, in order to eliminate the immunogenic cellular components of the tissue, while preserving the three-dimensional histoarchitecture and ECM components. Porcine peripheral nerve (sciatic branches were decellularised using a low concentration (0.1 %; w/v) sodium dodecyl sulphate in conjunction with hypotonic buffers and protease inhibitors, and then sterilised using 0.1 % (v/v) peracetic acid. Quantitative and qualitative analysis revealed a ≥95 % (w/w) reduction in DNA content as well as preservation of the nerve fascicles and connective tissue. Acellular nerves were shown to have retained key ECM components such as collagen, laminin and fibronectin. Slow strain rate to failure testing demonstrated the biomechanical properties of acellular nerves to be comparable to fresh controls. In conclusion, we report the production of a biocompatible, biomechanically functional acellular scaffold, which may have use in peripheral nerve repair

    Business analytics in industry 4.0: a systematic review

    Get PDF
    Recently, the term “Industry 4.0” has emerged to characterize several Information Technology and Communication (ICT) adoptions in production processes (e.g., Internet-of-Things, implementation of digital production support information technologies). Business Analytics is often used within the Industry 4.0, thus incorporating its data intelligence (e.g., statistical analysis, predictive modelling, optimization) expert system component. In this paper, we perform a Systematic Literature Review (SLR) on the usage of Business Analytics within the Industry 4.0 concept, covering a selection of 169 papers obtained from six major scientific publication sources from 2010 to March 2020. The selected papers were first classified in three major types, namely, Practical Application, Reviews and Framework Proposal. Then, we analysed with more detail the practical application studies which were further divided into three main categories of the Gartner analytical maturity model, Descriptive Analytics, Predictive Analytics and Prescriptive Analytics. In particular, we characterized the distinct analytics studies in terms of the industry application and data context used, impact (in terms of their Technology Readiness Level) and selected data modelling method. Our SLR analysis provides a mapping of how data-based Industry 4.0 expert systems are currently used, disclosing also research gaps and future research opportunities.The work of P. Cortez was supported by FCT - Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. We would like to thank to the three anonymous reviewers for their helpful suggestions
    corecore